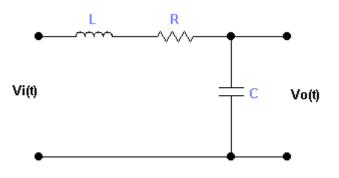
Philadelphia University

Student Name:

Faculty of Engineering

Student Number:

Dept. of Electrical Engineering Final Exam, Second Semester: 2018/2019


Course Title: Control Systems – sec. 1	Date: 2/6/2019
Course No: (610414+640344) Lecturer: Dr. Mohammed Mahdi	Time Allowed: 2 hours
Lecturer: Dr. Mohammed Mahdi	No. of Pages: 2

Question 1:

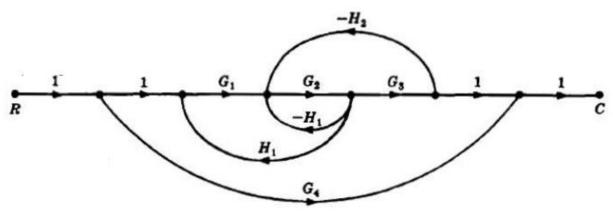
(25 Marks)

Objectives: This question is about system modeling.

Given the following RLC circuit: -

It is required to evaluate: -

1. Transfer function $\frac{Vo(s)}{Vi(s)}$.	(10 marks)
2. Show the possible kind of system output responses.	(10 marks)
3. Find system parameters ω_n , ς , k .	(5 marks)


3. Find system parameters ω_n , ς , k.

Question 2:

(25 Marks)

Objectives: This question is about Mason's Gain Formula and time response specifications.

A) Given the following SFG, it is required to apply Mason's Gain Formula obtain to transfer function C(s) / R(s). (15 marks)

B) Derive the general first order system time response for unit step change in input

 $\frac{Y(s)}{R(s)} = \frac{k}{\tau s + 1}$. Then find **y(0)**, **y(\tau)**, and **y(** ∞ **)**. (10 marks)

Question 3:

Objectives: This question is about absolute stability.

Why do the absolute stability check deal with the characteristics equation?. Then apply **two methods** to check the absolute stability of the following characteristic equation: -

$$\boldsymbol{P}(\boldsymbol{s}) = \boldsymbol{s}^4 + \boldsymbol{4} = \boldsymbol{0}$$

Question 4:

Objectives: This question is about controller design.

Given the open loop transfer function $G(s)=rac{5}{(s+20)}$. It is required to design PI

controller so that the desired closed loop poles are located at s = -10 and s = -20. Then check your design result.

(25 Marks)

(25 Marks)